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Abstract. Starting from the phase-space generating functional of the Green’s function for 
a constrained Hamiltonian system the canonical Ward identities under the global symmeby 
transformation in phase space is deduced. The l o d  transformation connected wifh this global 
symmevy transformation is studied, the consewed charges are obtained at quantum level 
if the effective canonical aclion is symmetric (the constraints are also invariant under the 
transformation) and, therefore. the canonical Noether theorem in the quantum case is obtained. 
The generalized wonical Ward identities under the local transformation has been deduced. We 
give a preliminary application to a system of interacting polaron with photon. The conserved 
charges and Ward identities for proper vertices are obtained, but we do not carry out the 
integration over the canonical momenta in the phase-space generating functional as usually 
performed. 

1. Introduction 

The connection between continuous symmetry and conservation laws is usually referred to 
as Noether’s theorem in the classical theories. All of these discussions are based on the 
examination of the Lagrangian in configuration space and the corresponding transformation 
expressed in terms of Lagrange’s variables. The system with a singular Lagrangian is 
subject to some inherent phase space constraint which is, in fact, a constrained Hamiltonian 
system (Sundermeyer 1982). The generalization of Noether’s theorem to a system with 
singular Lagrangian in terms of canonical variables was discussed by Li and Li (1991) and 
Ll(1991). 

Ward identities (or Ward-Takahashi identities) and their generalization play an important 
role in modern quantum field theories (Ward 1950, Takahashi 1957. Slavnov 1972, Taylor 
1971). They are useful tools for renormalization of field theories and calculations in 
practical problems (for example, in QCD). Ward identities have been generalized to the 
supersymmetry (Joglekar 1991) and superstring theories (Danilov 1991) and other problems. 
All these derivations for Ward identities in the functional integration method are usually 
discussed by using a configuration-space generating functional (Surra and Young 1973, 
Lhallabi 1989) which is valid for the case when the integration over canonical momenta 
belongs to the Gauss- or Feynman-type category. Phase-space path integrals are more basic 
than configuration-space path integrals; the latter provide for a Hamiltonian quadratic in the 
canonical momenta, whereas the former apply to arbitrary Hamiltonians. Thus, phase-space 
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form of the path integral is a necessary precursor to the configuration-space form (Miwahi 
1978). While the phase-space generating functional cannot be simplified by canying out 
explicit integration over the canonical momenta, even if the integration over the momenta 
can be carried out, the effective Lagrangian sometimes shows singularity with a S -function 
(Lee and Yang 1962, Gerstein ef al 1971, Du et al 1980). Especially for the constrained 
Hamiltonian system with complicated constraints, it is very difficult or even impossible to 
carry out the integration over the canonical momenta (Nishikawa 1993). The properties 
of the generating functional in phase space under local transformation of the canonical 
variables was discussed and the canonical Ward identities in phase space deduced by using 
these transformation properties in Li (1994a-c). 

In this paper the canonical quantal symmetry for a constrained Hamiltonian system will 
be further studied. Based on the phase-space generating functional of Green's function for 
a system with a singular Lagrangian, the generalized Ward identities under global and local 
transformation in phase space are deduced. The local transformation corresponding to the 
global symmetry transformation is considered and the conserved charge is obtained at the 
quantum level if the effective canonical action is symmetric and the constraint conditions 
are invariant under those transformations. Thus, the canonical Noether's theorem in the 
quantum case is also deduced. We have generalized the canonical Ward identities to a more 
general case for the local transformation. We give a preliminary application to a system 
containing phonons, elecbons and photons which can be described in terms of a singular 
Lagrangian; the conserved charges and generalized Ward identities for proper vertices are 
deduced. 

%ping Li and Chi Yang 

2. Global symmetry and canonical Ward identities 

Consider a system described by the field variables +?'(x) (a = 1,2, . . . , n), where a denotes 
an index for different fields or different components of a field. The Lagrangian of the field 
is L(qa, +?>) where 9% = a@@, a, = a / a x @  and xp = ( t .  x ). For a system with a 
singular Lagrangian whose extended Hessian matrix is degenerate (Sundermeyer 1982). 

Due to the singularity of the Lagrangian, the motion of this system is restricted 
to a hypersurface of the phase space, determined by a set of constraints. Let Ak 
(k = 1,2 , .  . . , K) be the first-class constraints and 8, (i = 1.2,. . . , I )  be the second- 
class consmints The gauge conditions associated with the first-class constraints are s-& 
(k = 1,2, . . . , K). The phase-space generating functional of Green's function for this 
constrained Hamiltonian system is given by (Li 1994a) 

..- 

S(ei)S(Ak)S(fh)det IIAx, ~1tlJl[detIIBi,8j]11''* 

d4x(J,+?a+ Kena)  . 11 
Using the 8-function and integral properties of the Grassmann variables Ci(x) and rk(x), 
one obtains 

where 
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+!d‘)’[Fk(xHh(x). MY)ICI(Y) + l ~ i i ( ~ ) ( e i ( x ) , e j ( ~ ) l C j ( ~ ) l  1 
IP = 1 d4x Cp = 1 d4x (n& - ‘He) 

(2) 

and the canonical action is 

(3) 

where the n, are canonical momenta conjugate to vu, nu = aCc/aoje, Wc is a canonical 
Hamiltonian of the system, A;(x),  A&) and Ai@) are multiplier fields, A, = (A;, Ak.I.1) 
and (, ] denotes the Poisson bracket. We have introduced the exterior sources Je and KCL 
with respect to the (pcL and nu, respectively, which does not alter the calculation of Green’s 
functions. For the sake of simplicity, let us denote # = ((pa, A,, Cu, F), n = (nu), 
J = (&), K = (K,) and I P  = I&. Thus, expression (1) can be written as 

Z [ J ,  K] = D#Dn exp [ i[lp + 1 d4x ( J @  + Kn)] 1. (4) 

For a system with a regular (non-singular) Lagrangian, the effective canonical action is 
given by (3). 

Let us consider a global symmetry transformation in extended phase space whose 
infinitesimal transformation is given by 

x”’ = x p  + Ax!’ = x p  + E , , ~ ~ ~ ( X , # ,  X) 

#’(x’)  = # ( x )  + A#@) = @ ( x )  + E , , S ~ ( X ,  @.n) (5) 1 ~ ’ ( x ’ )  = ~ ( x )  + An(x) = ~ ( x )  + E ~ T ~ ( X ,  4, X) 
where E~ (u = 1,2, . . . , r )  are infinitesimal arbitrary parameters and PU, So and Tu are 
some functions ofx, # ( x )  and ~ ( x ) .  The conformal and internal transformations are special 
cases of the transformation (5). Under the transformations (9, the variation of (effective) 
canonical action is given by (Li 1993a) 

6IP 
Sir  

- #+AX”) + -(AX - X+AX’) 

I +a,[(n$ - Wc)Ax’] + D[n(Air - # , v A ~ ” ) l  

where D = d/dt, and 

It is supposed that the Jacobian of the transformation is equal to unity. The phase-space 
generating functional (4) is invariant under the transformation (5). Thus, we have 
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If the (effective) canonical action is invariant under the transformation (5). S I P  = 0, and 
from (8) one obtains 

Z [ J ,  Kl = /"D$Dnexp [i[lp + Id4 .  ( J 4  + Kn)]}(l +i.% [d4x (J(S' -4,,7,') 

Zi-ping Li and Chi Yang 

+K(T" - n , , 7 9  + a , w + +  K Z ) T ~ I  

Consequently, we obtain the following results. If the (effective) canonical action is invariant 
under the transformation (5) in the extended phase, then, the phase-space generating 
functional of the Green's function satisfies the equation 

Expression (10) can be called the canonical Ward identities under the global symmetry 
transformation in phase space. 

For the internal symmetry transformation Vu = 0; in this case expression (10) can be 
written as 

d4x J(x)S" x -, - + K(x)T' x - - Z [ J , K ] = O .  /" [ ( ' is"J 16sK) ( 'is"J'is"K)] 

3. Conserved charge in the quantum case 

The connection between the canonical continuous symmetry and conservation laws is usually 
referred to as the canonical Noether's theorem in classical theories 0.i 1993a). In this paper 
the realization of a canonical symmetry (especially global symmetry) for a constrained 
Hamiltonian system at the quantum level is studied. 

Let us start from a classical canonical action, invariant under the transformation (5). 
Then we quantize the system. This means that not only is the classical trajectory allowed, 
but also all of the possible paths, each one with its own weight. We take the classical 
canonical action and insert it into the phase-space generating functional (4). In the functional 
formalism we may make use of the local transformation in extended phase space: 

x,' = x p  t Axfi  = x p  +&,(~)7~~(~,4,ir) 
@ I @ ' )  = + ( ~ ) + A + ( x )  = @ ( x ) + ~ ~ ( x ) F ( ~ , @ ~ r )  (12) I ~ ' ( x ' )  = n(x) + An(x) = ~ ( x )  + ~ ~ ( x ) T ~ ( x . + ,  n) 

where E ~ ( X )  (U = 1,2, . . . , r )  are infinitesimal arbitrary functions and they will vanish 
on the boundary of the time-space domain. Under the transformation (12) the variation of 
canonical action is given by 
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(13) 

I 
d4x {[(ad - 'H,)TpU]arsc(x) + x(S" - 4,,7pu)D~0(x)). J 

Because the canonical action is invariant under the global transformation (5), then the first 
integral in expression (13) is equal to zero. According to the boundary condition of &.,(x), 
expression (13) can be written as 

6IP = d4x { [ ( x $  - H,)IpU]a,&,(x) + n(S" - 4,,,7p")D~a(x)1 

= - /d4x~o(x)(a , [ (n4 -Hc)7p"l+D[~(S" -4,,T"')ll. (14) 

s 

S 
The phase-space generating functional (4) is invariant under the local transformation (12) 
and, hence, leads to 

Z [ J ,  K] = d4x [xd - 7.1, + .I4 + KR] I D+Dn exp i 

x 1 - i 
I S  
d4x c,(x){apI(n$ - Hc)7'"1 + D[rr(S" - @~,~T'91 ( S  

1 ) 
-J(S' - 4,,7"') - K(T" - R , p 7 " u ) }  

+i d4x a,[(J@ + K x ) ~ , ( x ) 7 ~ " 1  . (15) 

We functionally differentiate (15) with respect to &,,(x), and set all exterior sources equal 
to zero, i.e. J = K = 0, and obtain 

~ D @ D n { a , [ ( a d  - H,)7pu1 + D[n(S" - 4,,Tpo)l]exp i d4x (xd - E,) = 0 

It follows that 

(16) 

(17) 

H I 
(U = 1,2, .  . . , r ) .  

{oiT*{a,[(T4 - X,)IW"1 + D [ ~ W  - # , G ~ p a ) ] ~ l o )  = o (U = I, 2 , .  . . , r ) .  

The symbol T* stands for the covariantized T product (Surra and Young 1973). 
Expression (17) can also be written as 

ac(oiT[(n4 - X J ~ ~ ~ I ~ O )  + D(OIT[R(S~ - ~, ,T~~") I IO)  = o (U = ~ 2 , .  . . , r ) .  

(18) 

We now take a cylinder in four-dimensional space, the axis of which is directed along 
the t axis and the upper and lower bottom Vi and Vz are two like-space hypersurfaces t = t~ 
and t = f2 respectively. If we assume that the fields approach zero rapidly enough, then 
taking the integral of (18) on this cylinder, from Gauss's theorem of four-dimensional space 
we can neglect the contribution to the boundary of the infinite cylinder connecting VI and 
V2. Thus, we have 

d3x (01T[nS" - 6.krY" - ~ Z " ] ~ O )  = constant (U = 1,2,. . . , r ) .  (19) 

Equation (19) expresses the conserved charge at the quantum level connected with the 
classical canonical Noether theorem in phase space (Li 1993b), which means that the integral 
in three-dimensional space of the expectation values of some operators on the ground state 
is q u a l  to a constant. These results hold true for the anomalies-free theories. 
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For a system with a singular Lagrangian, (19) holds true on the constrained hypersurface 
if the canonical action and constraint conditions are invariant under the transformation (12). 

The advantage of the above derivation for conserved charge is that one need not simplify 
by carrying out explicit integrations over momenta in the phase-space generating functional. 
In the general case this cannot be done, and the phase-space generating functional cannot 
be represented in the so-called Lagrangian form, i.e. in the form of a functional integral 
only over the 'coordinates' of the expression containing a certain effective Lagrangian in 
configuration space. 

4. Local transformation and generalized canonical Ward identities 

Let us now consider a functional integral 

Z F [ J ,  KI = J D@DxF(@. x )  exp [ i[ Ip + [ d4x ( J @  + Kn)] 1 (20) 

where F(@,  n) is a functional of 'he variables @ and x.  For the case J = K = 0, the 
expectation value of the operator F on the ground state is given by equation (20). If one 
takes the product of the fields + ( x ) ,  F = @ ( x ~ ) @ ( x ~ ) .  . .@(x.) for F .  one can obtain the 
Green's function from (20). 

Consider an infinitesimal local transformation in an extended phase space: 

where ~ ~ ( 1 )  (U = 1.2.. . . , r )  are infinitesimal arbitrary functions, the values of E ~ ( x )  and 
their derivatives on the boundary of the timespace domain vanish, and 

R: = Ay(k)ay(t) s, = B,"(')a,,, T, = cp)aV(,,,) 
w(n) = wp..  .Ap  = a,a,. . . a,a, (22) 

c-rz 
n 

where A, E and C are functions of x ,  @ and n. The Jacobian of transformation (21) is 
denoted by J [ + .  x ,  E ] .  Owing to the boundary conditions of k ( x ) ,  the functional integral 
(20) is invariant under the transformation (21), which implies 

62.1 =o. 
SE' E=O 

From (6) and (20) one obtains the generalized canonical identities in phase space: 

Z F [ J ,  K ]  = 0 (23) II .p+ifi.'.+ & 
-iEf(@,pFJ) + iFn(FK) - idf(n,,FK) 

where 
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In the above expressions we have used J [ @ ,  x ,  01 = 1. The E,", io and fc are adjoint 
operators with respect to R,", S, and T, respectively (Li 1987). For the case F = 1, the 
generalized canonical Ward identities (23) converts to the Ward identities in phase space 
(Li 1994a). 

5. An application 

As an application of the previous results, we study a system of interacting polaron 
and photon. The polaron is basic to the Bardeen-Cooper-Schrieffer (BCS) theory of 
superconductivity of metals. A Lagrangian which describes the electron-photon (polaron) 
interaction was proposed in 1 + 1-dimensional space by Rodriguez-Nunez (1990). Now 
a case involving an electromagnetic field will be discussed. The inclusion of an 
electromagnetic field can be done by requiring that a, -+ a, - ieA,. Also, we can add 
the electromagnetic invariant aFpyFP", where F,. are the usual electromagnetic tensors 
Flrv = arAv - &A,, and A,(x) represents an electromagnetic field. The Lagrangian for a 
system of interacting polaron and photon in 1 + 3-dimensional space can be written as 

- 1  1 
2m 

1 
4 

L. = -- F,,F'" + +* i(a, - ieAo) + -(V - ie A )' + 
(24) 

1 
+z[p(ao~)2 - s(aiq)'i - w v  

where @ ( x )  represents the electronic field, q ( x )  represents the phononic field, A,(x) = 
(A&), A ( x ) ) ,  and p .  s and G are parameters (Rodriguez-Nunez 1990). 

The canonical momenta R*, r*., nq and ir, conjugate to @, $P, q and A, are 

respectively. The canonical Hamiltonian density of the system is given by 
Ue = x*$ + x#.$* + Yr rq + YrPA, - r 

A 1 1 1 
2 4 2m 

= -$ - A'aiz; + -&Fit - e@*Ao+ - -@*[(V - ie A )'I@ 

The primary constraints are 
O 1 = ~ + - i + * % O  
O 2 = K i l ' % O  

h i = ~ o " O .  
The total Hamiltonian is given by 

H ~ = ~ d ~ x ( U , f A i 6 1  + h z B z f h 3 h i )  (30) 

(31) 

where Ai(x), A&) and A3(x) are Lagrangian multipliers. The stationary condition of the 
primary constraints 8; (i = 1,2), {6i, H T ]  % 0, yield the equations 

2 1 
2m 

ihz % e$r*Ao t -[V'+* f ieV$r*. A + ieV . ($r* 2 ) - eZAZp*J - Gqp* 
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(32) 
1 2  i h  % -e$Ao + -[‘J * - iev . ($ A ) - ieV$. A - e2A$] + Gq$. 

Equations (31) and (32) fix the Lagrangian multipliers, but do not produce additional 
constraints. The stationary condition of the primary constraint A , ,  [A, ,  HT) FZ 0, yields the 
secondary constraint 

(33) 
The stationary condition of this secondary constraint does not produce another constraint. 
From the linear combination of the constraints el, 6’2 and x ,  one sets 

(34) 
It is easy to check that A1 and hz are first-class constraints and that 81 and &, are second- 
class constraints. 

We adopt the quantization of path integrals. For each first-class constraint a gauge 
condition should be chosen. Consider the Coulomb gauge 

S22 = &Ai FZ 0. (35) 
For consistency of 522, this has to be aoSh % 0, and we may take another gauge condition 

a1 = a , ~ ~ + a ~ a , ~ ~ = o .  (36) 
The factors det I{%, Aa)l and det I{@, ej}l are independent of field variables. Thus, we 
can omit this factor from the generating functional (la). Hence, the phase-space generating 
functional for a system of interacting polaron and photon is given by 

Zi-ping Li and Chi Ymg 

A 

2m 

x = airi +e$*$ FZ 0. 

112 = x - ie($e, - $*&) = &ni - ie(@z* - $ ‘ H ~ )  % 0. 

z[J,  KI = z[J’y Kw, 5 ,  KI ,  C, Kz, ~3 K3, V .  X, Y l  
= /” Z)A,Z)JTDR”Z)$Z)H*Z)$*Z)H,pZ)qZ)~Z).Z)wZ)Dv 

X exp [is d4x [L:H+ J’A, + K ” H ,  +<$ + KtHp + C$* + K z X v  

(37) 

1 f l?q  + K 3 ~ q  + vkgk + XLWI + YiUi l  

I = /” Z)@Z)r exp [ i  /” d4x [& + J @  + K H ]  

where 

4 = (A,,, 9, $*, q . k  0, U) 

J = ( J f i ~ < ,  <, 7, v k ,  xfs yi) 

JI = (H,,. H * .  q-, nq) 
K = (K’, KI, KZ, K3) (38) 

&- P -  H P ~ + ~ , p ~ * + n g ~ + H P A p - ~ 3 t c + / L k ~ k f . Z ) w I ~ i  + V i s i  

$ ‘ ( X I  = e-’=$(x) J T $ ( X )  = e’“q(x). (39) 

Q =e /”  d3x (Ol$’$lO) =constant. (40) 

and pk = gk(x) ,  01 = y ( x )  and ut = ui (x )  are multiplier fields. 
The (effective) canonical action is invariant under the global gauge transformation 

From (19) we have the conservation law of charge 

V 

Similarly, from the translation invariance of time-space, one can obtain the conservation 
law of energy at the quantum level. 
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Now let us consider the local transformation in phase space: 

AL(x)  = A,@)  + a,&(x) n"(x) = +"x) 

+'(I) = exp(-is(x))@(x) + ( x )  = exp(is(x))np(x) (41) 

The Jacobian of the transformation (41) is equal to unity. The generating functional (37) is 
invariant under the transformation (41). 

Let us set F(@,n) = 1 in (23). Thus, in this case the generalized canonical Ward 
identities (23) become 

I * * ' ( x )  = exp(is(x))+*(x) n$.(x) = xp(x). 

/DQDn[VZoz - a P J P  - i e ~ + i < ~ * + i K n i ] e x p ( i / d 4 x [ ~ ~ +  J & + K n ]  

01 

Using a functional Legendre transformation (Li 1994a), one obtains 

IY@+nl= W [ J ,  K l  - d4x (J@ + K n )  (45) s 

Hence, expression (44) can be written as 

We functionally differentiate (47) with respect to @ * ( X I )  and p(x2)  respectively, and set all 
fields equal to zero, i.e. = @* = n* = A ,  = ZP = q = n, = p = o = v = 0, to obtain 

(48) 
Expression (48) indicates that there are some relationships among the propagators and proper 
vertices. Differentiating equation (47) many times with respect to the field variables, one 
can obtain various Ward identities for proper vertices in phase space. 

If one takes E ( X )  = q q ( x )  in equation (41), where EO is an infinitesimal parameter, 
then this transformation is a special case of the global transformation (5). The canonical 
Ward identities (11) for a global transformation in this case can be written as 
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Since the Hamiltonian is quadratic in canonical momenta, the integration over the 
canonical momenta in (37) can be performed and the effective Lagrangian in configuration 
space can be obtained which contains a gauge-fixing term in the Coulomb gauge. The Ward 
identity (48) can also be derived by using a configuration-space generating functional (Li 
and Xie 1995). 

6. Conclusion and discussion 

The canonical symmetry for a system with a singular Lagrangian at the quantum level is 
studied. The canonical Ward identities under the global and local transformation have been 
deduced. The canonical Noether theorem at the quantum level is also obtained. For a 
constrained Hamiltonian system the effective canonical action is different from the classical 
action. The existence of conserved quantities is required so that the classical canonical action 
is symmetric and the constraint conditions are preserved in the constrained hypersurface 
under the corresponding transformation. To illustrate the above considerations, a Lagrangian 
of interacting polaron and photon in 1 + 3-dimensional space is proposed. The conserved 
charges and Ward identities for proper vertices have been obtained, 

The above formulation is based on the path-integral quantization formalism following 
the Faddeev (1970) and Senjanovic (1976) procedure, in which we have introduced the 
exterior sources for canonical momenta. The most general, different quantization scheme 
is that proposed by Batalin and Vilkovisky (1977) and Fradkin and Vilkovisky (1975) 
(BFV procedure), who developed a canonical approach to Becchi-Rouet-Stora (BRS) or 
Becchi-Rouet-Stora-Qutin (BRST) quantization (Henneaux 1992). According to the BFV 
procedure, one introduces the Lagrangian multiplier fields for first-class constraints along 
with its corresponding canonical momenta, and introduce the Fermionic ghost fields together 
with their respective canonical momenta. In the enlarged phase space all the canonical 
variables are treared as dynamical variables. The functional integral can be formed once 
the conserved BRST charges have been found and the Fermi function has been chosen. 
For the case of interest, the BFV approach is equivalent to a simpler approach based on the 
construction of the BRS (or BRST) Hamiltonian associated with the effective Lagrangian 
obtained after fixing the gauge in the configuration-space generating functional, and using 
the Faddeev-Popov trick through a transformation of the generating functional in this gauge 
(Abdalla etal 1991). It has been illustrated by concrete examples that, after integrating over 
all canonical momenta, the expression for the phase-space generating functional of Green’s 
function for a constrained Hamiltonian system which has been obtained by the canonical 
quantization given by the Faddeev and Senjanovic procedure, can also be written in the 
form of a configuration-space generating functional containing a certain effective Lagrangian 
(Sundermeyer 1982, Gitman et a1 1990). Thus, one could verify that our formulation for 
the case when the integration over canonical momenta in the generating functional can 
be carried out is consistent and equivalent to the formulation obtained through canonical 
BRST quantization of an interesting system (Li 1994a-c). The advantage of our derivation 
is that one does not need to carry out the integration over the momenta in the phase-space 
generating functional of Green’s function as usually necessary; in the general case this 
integration cannot be carried out. 

The application of our results to Yang-Mills theory can proceed in the same way as 
discussed in section 5. The effective canonical action and the constraint conditions are 
invariant under scale transformation for ghost fields (Li 1994a): 

(50) 
a ~ “ ( x )  + esc‘(x) c ( x )  + e-T’(x) 
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where 8 is a constant even parameter. The conserved ghost charge at the quantum level 
can be obtained as 

Q, = 1 d3x (OIT'[n"(~o$ + f~bAo')CbllO) =constant 
V 

which coincides with the results obtained by means of the so-called effective action theories 
(Gitman et al 1990). 
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